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Abstract. A simple pseudopotential scheme, which incorporates compositional disorder as 
an effective potential, is proposed for calculation of the band structure of ternary compound 
semiconductors. It is shown that the present theory, which is free from any additional 
parameter, satisfactorily produces the band-gap bowings of ternary compounds when the 
lattice mismatch is small. 

1. Introduction 

The electronic band structure of ternary compound semiconductors is of considerable 
theoretical and experimental interest. Although several elaborate approaches (Wei 
and Zunger 1989, Krishnamurthy et a1 1988) may produce better values for the band 
structures, still the empirical pseudopotential method (EPM) within the virtual crystal 
approximation (VCA) offers the simplest, and yet a reasonably accurate, means of 
obtaining the overall band structure of the alloys. HowCver, at the same time, the VCA 
is known to lead to bowing parameters of the main gap that are too weak to account for 
experimental results. To remedy this shortcoming, it is necessary to include the disorder 
effect in the VCA. Baldereschi and Maschke (1975) treated the compositional disorder 
effect as a perturbation and calculated up to the, second order within the VCA approach. 
However, this perturbative approach was not completely satisfactory in explaining the 
band-gap bowings (Baldereschi et al1977). Also, the computational efforts required for 
this method is substantial, thus making the application of this method rather difficult. In 
this paper we propose a simple pseudopotential scheme which includes the compositional 
disorder into the VCA approach. Our scheme employs the local EPM and includes the 
disorder effect by introducing an effective disorder potential. Since, the present method 
is non-perturbative, it is as simple as the original EPM calculation. 

2. Effective disorder potential 

We consider a mixed crystal A,B,-,C. Here, we assume that all C atoms occupy the 
proper positions. Thus, in the following, we treat the crystal made of A C  molecules of 
fraction x and BC molecules of fraction 1 - x. The potential of the alloy is given by 

V(r> = Vvc ( r )  + Vdis ( r )  (1) 
where Vvc is the periodic virtual crystal potential and Vdis is the non-periodic potential 
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due to the compositional disorder. Vdis for a particular distribution is given by (Bal- 
dereschi and Maschke 1975) 

where A ( r )  = VAC(r) - VBc(r). Herej, indicates that the summation o n j  is carried out 
on the A C  molecular sites only, andjB on BC molecular sites only. 

The conventional VCA makes the following approximations 

2 A ( r  - R I )  = x 2 A ( r  - R I )  2 A ( r  - R I )  = (1 - X )  A ( r  - R I ) .  
I A  I I B  I 

This approximation makes vd, ,  disappear and V(r) becomes equal to Vvc(r). Instead, 
here, we introduce the disorder effect by assuming that C l ,  A(r - R I )  = ax Cl A ( r  - 
R , )  and ZIB A ( r  - R I )  = p ( l  - x )  Cl A ( r  - R I ) ,  where a and /3 are disorder functions 
dependent on the concentration x and the potential energy. The concentration depen- 
dence of a and /3 is easy to understand. For example, a will be equal to unity when x = 
1 .  However, when x # 1, a should be other than unity, so that it does not become 
identical with VCA. 

With this approximation, the disorder potential is given by 

This approximation is analogous to the single-site approximation of the self-energies in 
the CPA approach and replaces the random fluctuating potential by a periodic effective 
disorder potential (Chen and Sher 1981). A simple way of utilising equation ( 3 )  is to 
neglect the concentration dependence of a - /3 and to treat it as an adjustable parameter. 
This type of approximation coupled with an empirical tight-binding method was tried 
by Porod and Ferry (1983).  Although their method was successful in describing the 
band-gap bowings of ternary and quaternary semiconductor alloys, it is not supported 
by any physical justification in neglecting the concentration dependence. 

In this paper, we show that the concentration dependence of a - /3 can be evaluated 
by considering an ensemble average of the potential energy deviation from the VCA 
value. For this purpose, we first assume that, except for the nearest-neighbour (NN) sites 
from the origin, all lattice sites are occupied by the virtual molecules which have the 
potential energy of Vvc, For the NN sites, we assume that the sites can be occupied by 
any particular combination of AC and BC molecules. With this assumption, we now 
evaluate the root mean square deviation of the potential energy from the VCA value 
(Harrison 1966). First, it is obtained using the disorder functions a and /3 and, next, 
directly from the probability calculation. 

A(r  - R I )  - x 2 A ( r  - R , )  )*y = I(a - l)xNA(d)I 
I 

112 N 

= (2 n = O  N C n x n ( l  - ~ ) ~ - ~ ( n  - Nx)’ [A(d ) I2 )  . (4) 

Here d is the NN distance and N the number of NN sites. Similarly, we obtain 
112 

N 

1(/3 - 1 ) ( 1  - x)NA(d) l  = (2 NC,(l - x ) ” x ” ’ ~ [ ~  - N ( l  - x ) ] ’ [ A ( d ) ] ’ )  . ( 5 )  
n=O 

From these equations, we obtain the result 
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The second term in equation (6) can be simplified as follows: 

Now equation (6) is simplified to 

a - p = "[x( 1 - x)N] -1'2. 

Here we assume that the disorder lowers the effective potential and, thus, we choose 
the negative sign for a - p. The effective disorder potential is now given by 

Here Nis 12 for the FCC structure. This result is not yet completely general, because we 
considered the compositional fluctuation from the NN site only. However, we shall find 
that the NN contribution is sufficient to account for the band-gap bowings satisfactorily. 
In fact, we can relax the above restriction by assuming that the next-" sites are also 
occupied by a particular combination of real molecules and repeat a similar procedure 
as above to calculate a - p .  By repeating this procedure, we can include the whole 
crystal in the contribution. The final result is given by 

P = (i N i A ( d i ) 2 )  ' 1 2 / i  N i A ( d i ) .  
i =  1 i =  1 

Here i indicates the ith NNS and n can be extended to include the whole crystal. Although 
Ni becomes large and is approximately proportional to r2 ,  the potential A(r )  decreases 
more rapidly owing to screening, thus ensuring convergence of P. By adding this effective 
disorder potential to the virtual crystal potential, we have the final expression for the 
pseudopotential form factors: 

V(G) = x(S2AC/S2alioy)VAC(G) + - x)(QBC/S2aalloy)VBC(G) 

-p[x(l - 'I2 (1/S2 all~y)[~AC - S2BC VBC(G)l* (11) 

3. Results and discussion 

Since it is our aim to devise a simple and parameter-free theory to calculate the alloy band 
structure, we used equation (9) instead of equation (10). For numerical calculations, 
VAc(G) and VBc(G) should be corrected for the change in G-values due to the lattice 
constant variation (Lee et a1 1989). Since our scheme does not include the lattice 
relaxation effect, we believe that it is most suitable for the materials with small lattice 
mismatches. Indeed, it is known that the compositional disorder effect is significant only 
when the lattice mismatch is small as in the cases of Al,Ga, -,As and GaAs, -,P, (Bernard 
and Zunger 1987, Lee et a1 1989). 
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Figure 1. Calculated values of the Eo gap for 
AI,Ga, _,As are compared with experiments: U, 
Dingle et a1 (1977); -, present theory; . . ., 
without disorder; - - -, experimental results of 
Bosio et a1 (1988) which can be fitted using 
equation (11) andp = 0.11. 
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Figure 2. Calculated values of ED of GaAs, -xP, 
are compared with experiment: ., Nelson and 
Holonyak (1976); -, present theory; ---, 
without disorder. 

Table 1. Pseudopotential form factors and lattice constants used in the calculation, after 
Cohen and Bergstresser (1966). 

GaAs GaP AlAs 

vs (RYd) -0.235 -0.224 -0.230 
v; (RYd) 0.011 0.033 0.026 
vs, (RYd) 0.062 0.072 0.071 
V $  (RYd) 0.071 0.120 0.105 
V t  ( W )  0.050 0.070 0.065 
v;: (RYd) 0.010 0.020 0.005 

a (4 5.653 5.450 5.661 

In figures 1 and 2, we show the calculated band gaps of A1,Gal -,As and GaAsl .-,P,. 
The result shows clearly that, without the disorder potential, the EPM approach within 
the VCA does not produce the band-gap bowings. However, on adding the disorder 
potential (equation (9)) for A1,Gal -,As and GaAsl -,P,, excellent agreement with the 
experimental data has been obtained (Dingle et a1 1977, Nelson and Holonyak 1976). In 
table 1, the form factors and lattice parameters used in the calculation are given. The 
form factors are taken from Cohen and Bergstresser (1966), but slightly modified to fit 
more experimental data (Lee eta1 1989). 

Recently Bosio et a1 (1988) reported an experimental result on Al,Gal -,As, which 
has a much smaller bowing constant. Their result can be fitted satisfactorily by our theory 
if we use equation (11) and put p = 0.11. This indicates that the NN approximation may 
not be sufficient and, instead, we should use equation (11) and treatp as an adjustable 
parameter, if the results of Bosio et a1 are correct. However, since their result is confined 
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only to the direct gap of Al,Gal-,As, it is not yet clear whether this small bowing 
constant represents the true experimental situation. Further experimental results on the 
direct and indirect gaps of Al,Ga, -,As and other ternary compound semiconductors 
appear necessary before we disregard the earlier data of Dingle et a1 (1977). 

In conclusion, we have presented a simple pseudopotential scheme for the calculation 
of the band structure of ternary compound semiconductors. In this scheme, the com- 
positional disorder is introduced as an effective disorder potential. This effective poten- 
tial, which is parameter free, can be readily included in the conventional EPM calculation. 
It is shown that the bowings of the band gaps of A1,Gal-,As and GaAsl-,P, can be 
produced satisfactorily using the present theory. 
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